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We now restrict attention to d = 2 and collect here some scale invariant estimates.

RSW Estimates. The starting point is the so–called Russo–Seymour–Welsh estimate,

which expresses the crossing probability of a (longer) rectangle in terms of that of a square.

We start with the simplest version whose proof is due to Smirnov:

Lemma (RSW: Hexagonal tiling at criticality). Consider hexagonal tiling where hexagons

are blue or yellow with probability 1
2
. If C(a, b) := P(C(a, b)) denotes the crossing probability

of an a× b rectangle, then

C(2a, b) ≥ 1

4
· C(a, b)2.

Proof. Let R(a, b) denote an a × b rectangle with bottom left corner equal to (0, 0). The

starting point is to note that given any left right crossing γ of R(a, b), and γ′ being its (geo-

metric) reflection across y = b, the domain below γ ∪ γ′ intersected R(a, b) forms a new do-

main R in which we can ask new crossing probability questions: we color γ∪ [(a, 0), (2a, 0)]∪

[(2a, 0), (2a, b)] blue and γ′∪ [(0, a), (0, 0)]∪ [(0, 0), (a, 0)] yellow, and consider the event Gb(γ)

of a blue crossing from γ to J and the event Gy(γ) of a yellow crossing from γ′ to J ′

[picture of domain in question, colored appropriately...]

The key observation is that the events Gb and Gy are dual and exhaustive: there is a blue

crossing if and only if there is no yellow crossing. Thus

P(Gb(γ)) + P(Gy(γ)) = 1.
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Now by total symmetry of the regions in question and blue–yellow symmetry we conclude

P(Gb(γ)) = P(Gy(γ)) = P(G ′b(γ′)) = 1/2.

(Here ′ denotes the fact that we are envisioning the event taking place on the right rectangle.)

It is also clear that if both Gb(γ)∩{γ blue} and Gb(γ′)∩{γ′ blue} happen, then we must

have a crossing of R(2a, b):

⋃
γ:[(0,0),(0,b)] [(a,0),(a,b)]; γ′:[(a,0),(a,b)] [(2a,0),(2a,b)]

[Gb(γ)∩{γ blue}]∩[Gb(γ′)∩{γ′ blue}] ⊆ C(2a, b).

(Note that here γ′ is not necessarily the reflection of γ.)

[picture of Gb(γ),Gb(γ′) forming crossing of R(2a, b), with γ′ not reflection of γ...]

It therefore remains to sum up over γ. Here we require the notion of highest blue crossing:

given a fixed configuration ω, the left right crossings of any rectangle can be partially ordered

according to the topological region above it and given any two crossings γ, γ′ which are not

comparable the boundary of the region above both of them defines a new crossing higher

than each, which ensures the existence of a maximum element.
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[picture illustrating lowest crossing and γ ∧ γ′...]

Two things are of interest about highest crossings:

• Let Π be the random variable denoting the highest crossing, then the events {Π = γ}

over all topological curves joining the left side to the right side of R(a, b) disjointly

partitions C(a, b):

C(a, b) =
∑

γ:[(0,0),(0,b)] [(a,0),(a,b)]

P(Π = γ).

• The event {Π = γ} is probabilistically independent of the region below γ in R(a, b).

(The state of γ being the highest crossing is not disturbed by changing the state of

any site above γ.)

From the second item we conclude that Gb(γ) is independent of the event {Π = γ} unless γ

hits the x–axis, i which case the domain of relevant crossing will shrink: it will be determined

by the “last time” γ hits the x–axis and in case γ hits the point a we have P(Gb(γ)) ≡ 1. In

any case it is always true that P(Gb(γ) | Π = γ) ≥ 1
2
.

[picture of γ hitting x–axis forming non–trivial “small” domain; picture of γ hitting

x–axis at point a, together with γ′ forming a crossing of R(2a, b)...]
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Summing up, we get that

P(Gb) := P

 ⋃
γ:[(0,0),(0,b)] [(a,0),(a,b)]

Gb(γ) ∩ {γ blue}


=
∑
γ

P(Gb(γ) ∩ {Π = γ})

=
∑
γ

1

2
· P(Π = γ)

=
1

2
· C(a, b).

Finally, by the FKG inequality,

C(2a, b) ≥ P(Gb ∩ G ′b) ≥ P(Gb)2 ≥ 1

4
· C(a, b).

The original argument due to Russo (1981) yields a bound for a crossing of R(3
2
· a, a) in

terms of crossing of the square R(a, a) for any value of p; also the proof does not use duality.

We will sketch this argument below. First a simple consequence of the FKG inequality:

Proposition (“Square root trick”). Let A1, . . . , Am be increasing events with equal proba-

bility. Then for 1 ≤ k ≤ m,

P(Ak) ≥ 1− {1− P (∪mi=1Ai)}
1/m ,

so in particular, with m = 2, we have

P(Ak) ≥ 1−
√

1− P(A1 ∪ A2), k = 1, 2.

Proof. We note the set theoretic identity that

(∪mi=1Ai)
c = ∩mi=1A

c
i ,
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with the Aci all being decreasing events so that the FKG inequality holds and we have:

1− P(∪mi=1Ai) = P((∪mi=1Ai)
c)

= P(∩mi=1A
c
i)

≥
m∏
i=1

P(Aci)

= (1− P(Ai))
m.

Lemma (RSW). Set τ = C(a, a). Then

C

(
3

2
· a, a

)
≥ (1−

√
1− τ)3.

Proof. (Sketch). Consider the box R(a, a) centered at the origin and R(a, a)′ which is R(a, a)

shifted horizontally by 1
2
· a to the right. It is clear that a crossing of R(3

2
· a, a) would be

accomplished if there are horizontal crossings of both boxes together with a vertical crossing

of the R(a, a)′ to join them:

[picture of RSW argument: three crossings forming a crossing of larger rectangle with

labels, π, α, β...]

Some thought reveals that some care is required to specify the beginning and ending

points of these crossings; the precise prescription is as follows:

• Π± : ∃π an open left right crossing of R(a, a) whose last intersection (oriented from

left to right) with the vertical midline of R(a, a) is above or below the x–axis;

• A±π : ∃α an open path from top of R(a, a)′ to π′r, πr, respectively, where πr ⊂ π is the
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last portion of π: from its last intersection with the vertical midline of R(a, a) to the

right boundary of R(a, a) and π′r is its reflection across the right boundary of R(a, a);

• B± : ∃β an open left right crossing of R(a, a)′ starting on the top or bottom half of

R(a, a)′;

we have then that

B+ ∩
⋃
π

(A−π ∩ Π−) =: B+ ∩G− ⊆ C
(

3

2
· a, a

)
,

so that G− is the event of a left right crossing of B(a, a) together with a crossing connecting

it to the top of B(a, a)′: an increasing event.

By symmetry of the regions in questions, it is clear that

P(A+
π ) = P(A−π ), P(B+) = P(B−),

so we have by the square root trick that

P(B+) ≥ 1−
√

1− (B+ ∪B−) = 1−
√

1− τ ,

so that by the FKG inequality

C

(
3

2
· a, a

)
≥ P(B+ ∩G−) ≥ (1−

√
1− τ) · P(G−).

It remains to estimate P(G). Here as in the previous argument we will replace the event

Π− by L−Π which adds the additional requirement that π is the lowest left right crossing of

R(a, a), so that

G ⊇
⋃
π

A−π ∩ L−π .

We note again that supposing π only intersects the vertical line of symmetry once, A−π takes

place above the region bounded by π and is therefore independent of L−π so that

Pp(A−π | L−π ) = Pp(A−π ).
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In case multiple intersections occur, we observe that “small regions” would be formed in

B(a, a)′ by π and since A−π is independent of the state of these regions, we may as well

replace the conditioning (without changing the conditional probability) by the condition

that the entirety of such regions (and their boundary, which are portions of π) are blue, and

so by the FKG inequality, we would obtain

Pp(A−π | Lπ) = Pp(A−π | {small regions blue}) ≥ P(A−π ).

(The probability is in fact higher here since the crossing α has more possible landing points

due to the “protrusions” caused by the multiple intersections.)

[picture of multiple intersection with vertical axis, with region “below” π shaded...]

Now it is clear that P(A−π ) ≤ τ since the relevant event is contained in the event of a

top bottom crossing of R(a, a)′. Therefore, summing up and using the square root trick to

estimate P(A−π ), we obtain

P(G) ≥ (1−
√

1− τ) · P(Π−).

Applying the square root trick to Π− yields the final factor of 1−
√

1− τ .

First Consequences.

We collect here some corollaries of the RSW estimate via iteration. What turns out to

be useful (in addition to crossings of rectangles) are crossings in annuli :

Definition. Let 0 < a < b ∈ N+ and denote by A(a, b) the corresponding annulus :

A(a, b) = R(b, b) \R(a, a).
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By abuse of notation this may also denote the corresponding event of a blue ring inside the

annulus or its probability.

Corollary. For all p ∈ [0, 1],

• Cp(2a, a) ≥ Cp(
3
2
a, a)2 · Cp(a, a);

• Cp(3a, a) ≥ Cp(2a, a)2 · Cp(a, a);

• Ap(a, 3a) ≥ Cp(3a, a)4

Proof. These statements are proved by pasting together simpler events to form the event in

question and estimating the probability by the FKG inequality. We have:

• A crossing of R(2a, a) can be achieved as:

[picture of achieving this event... left right crossings in R(2a, a) and R(2a, a)′ which is

its shift by a to the right... top bottom crossing in middle square R(a, a)′ to “stitch”

the two together...]

• By increasing the scale this can be done exactly as the previous item.

• A ring in the relevant annulus can be guaranteed by the crossing of four rectangles

congruent to R(3a, a):
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[picture of achieving this event... square annulus with four crossings in the four relevant

rectangles...]

As a consequence, we obtain the following:

Theorem (Harris theorem). If p > pc, then with probability one (w.p.1) the dual model

does not contain an infinite cluster.

Proof. This follows from two statements:

• For all a > 0, Cp(a, a) & θ(p)2 (recall that θ(p) = P(|C(0)| =∞); here & means greater

than or equal to up to a numerical constant).

• If lim infaCp(a, a) > 0, then there is no dual infinite cluster.

The first item follows from the FKG inequality: Let {la, ra, ta, ba} denote the events that

the origin is connected to the left, right, top, bottom boundaries, respectively. Then

• the four events are increasing and have the same probability by symmetry ;

• it is clear that

la ∪ ra ∪ ta ∪ ba ⊇ {0 ∞}

so that together with the previous item

4 · P(la) ≥ P(la ∪ ra ∪ ta ∪ ba) ≥ θ(p);

• la ∩ ra ⊆ C(a, a).

[picture of origin being connected to boundary of square...]

9 η.κ.Λ



(III)

We have therefore by the FKG inequality that

C(a, a) ≥ P(la ∩ ra) ≥ P(la) · P(ra) = P(la)
2 ≥

(
1

4
· θ(p)

)2

.

For the second item, lim infaC(a, a) > 0 means that Ap(a, 3a) is uniformly bounded below

as a→∞. So given any N ∈ N+, we can set up N concentric logarithmic annuli :

A(a, 3a), A(3a, 9a), A(9a, 27a), ...A((N − 1)a, 3(N − 1)a),

where Ap(k · a, 3k · a) > α > 0, for some α. Also, the presence or absence of circuits in these

annuli are clearly independent events.

[picture of dual origin being severed from ∞ by sequence of annuli...]

Therefore,

P(|C(0∗)| =∞) ≤ P

(
N⋂
k=1

Ac(ka, 3ka)

)
≤ (1− α)N

for any N and so there is no dual infinite cluster.

Exercise. Redo the proof of the first item in the above theorem using the square root trick

to show that

C(a, a) ≥ (1− (1− θ(p))1/4)2.

Rescaling. More dramatic results can be derived by applying the RSW estimates on many

scales. We start with the following rescaling lemma:

Lemma. Suppose at some scale a > 0, we have C(2a, a) ≥ 1 − cλ with c = 1/16 for some

λ > 0, then

C(2k+1a, 2ka) ≥ 1− cλ2k , ∀k ≥ 1.

Proof. First we note that
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[picture crossing of R(4a, a) as “stitching” of 3 crossings of R(2a, a) and 2 crossings of

R(a, a)...]

C(4a, a) ≥ C(2a, a)3 · C(a, a)2 ≥ C(2a, a)4,

where the last inequality is since C(2a, a) ≤ C(a, a)2:

[picture of crossing of R(2a, a), with dash in middle, implying crossings of the two

squares...]

Therefore,

C(4a, a) ≥ (1− cλ)4 (= 1− 4cλ+O(λ2) )

≥ 1− 4cλ.

Next we double in the vertical direction. Restricting crossing to the top or bottom half

(and these events are independent, we have that

C(4a, 2a) ≥ 1− P({no crossing in top half} ∩ {no crossing in bottom half})

= 1− (1− C(4a, a)) · (1− C(4a, a))

≥ 1− (4cλ)2 (since 1− C(4a, a) ≤ 4cλ)

= 1− cλ2,

since c = 1/16.

[picture of crossing of double rectangle by restricting to each half... versus picture of
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crossing which traverses both halves...]

Iteration now gives the result: Assume as inductive hypothesis that R(2ka, 2k−1a) ≥

1−cλ2k−1
and run the above argument to double the scale both horizontally and vertically.

As a consequence we can characterize supercriticality by crossing probabilities of squares:

Theorem.

p > pc ⇐⇒ lim inf
a→∞

C(a, a) = 1.

Proof. First suppose lim infa→∞C(a, a) = 1. Let

0 < λ < 1

and define the length scale 0 < L0 < ∞ to be large enough so that the rescaling hypothesis

of the previous lemma is satisfied:

L0(p, λ) = inf
a
{a : C(2a, a) > 1− cλ}, c = 1/16.

We know that L0 <∞ since recall that by the RSW estimates

C(2a, a) ≥ C(
3

2
· a, a)2 · C(a, a) ≥ (1−

√
1− C(a, a))3 · C(a, a),

and the right hand side tends to 1 by assumption.

We can now perform an overlapping rectangles construction to create a connection to∞:

[picture of connection to infinity via crossings of larger and larger overlapping rectangles

of the same aspect ratio... alternately “horizontal” and “vertical”...]

12 η.κ.Λ



(III)

The probability of all such connections being realized is
∏

k≥1(1−cλ2k) > 0 (since λ < 1);

given these connections, the origin is connected to infinity if we occupy L0 vertical bonds

along the x–axis. Thus,

Pp({0 ∞}) ≥ pL0 ·
∏
k≥1

(1− cλ2k) > 0.

Conversely suppose p > pc. By the rescaling lemma it is sufficient to show that

∃a > 0, C(2a, a) > 1− cλ for some λ < 1, c = 1/16.

We have that (Rn := R(n, n))

Pp({(∂Rn  ∞}) ≥ Pp({∃x ∈ Rn : x ∞})

−→
n→∞

Pp({∃ an infinity cluster})

= ψ(p) = 1.

(Recall that ψ(p) = 1 follows from θ(p) > 0 via the Kolmogorov 0–1 law.) Thus given any

ε > 0, for n ≥ n0 sufficiently large,

Pp({∂Rn  ∞}) > 1− ε.

Next let L� n and consider “coarse grained” events {ln,L, rn,L, tn,L, bn,L} that there is a

connection from ∂Rn to the left, right, top, bottom of ∂RL.

[picture of coarse grain connection between small box and large...]

As before, we have

ε > 1− Pp({∂Rn  ∞}) = Pp({∂Rn  ∞}c) ≥ Pp(lcn,L ∩ rcn,L ∩ tcn,L ∩ bcn,L).
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Since all these are decreasing events, we have by the FKG inequality that

Pp(lcn,L) ≤ ε1/4,

and similarly for the others. Again by the FKG inequality,

Pp(ln,L ∩ rn,L) ≥ (1− ε1/4)2.

Now a left right crossing of rL emerges if there is a blue circuit in An,L (an event which is

independent of ln,L, rn,L, etc.).

Let us now take L large and set up logarithmically many annuli, each of which gives

an independent chance of containing a blue circuit, all with probability bounded by some

α > 0: Indeed, we have that C(a, a) ≥
(

1
4
· θ(p)

)2
> 0 on all scales a (since p > pc) as in

the proof of the Harris theorem and so by RSW, the probability of existence of a circuit on

all scales is also strictly bounded from below (thanks for Helge Krüger for pointing out that

some argument along these lines was missing in the version given in lecture).

[picture of construction of left right crossing from “half coarse grain crossings” and a

circuit...]

This finally yields by the FKG inequality the estimate

C(L,L) ≥ Pp

(
(`n,L ∩ rn,L) ∩ (

⋃
O(log(L/n)) annuli

{∃ blue circuit})

)

≥ Pp(`n,L ∩ rn,L) · Pp

( ⋃
O(log(L/n)) annuli

{∃ blue circuit}

)
& (1− ε1/4)2 · log(L/n)α,
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which can clearly be made arbitrarily close to one.

Exercise. Show that if p > pc, then for all a > 0,

C(a, a) ≥ θ(p).

(Hint: consider a “9–square” construction and its shift and use translation invariance to

show that any connection 0 ∞ must cross a square of any scale.)

We can now also show continuity of transition:

Theorem. The function θ(p) is continuous at pc. In particular θ(pc) = 0.

Proof. First we show that θ(p) is continuous from the right. To this end note that

• Cp(n, n) is a continuous increasing function of p and

• Cp(n, n)↘ θ(p).

Now right continuity follows since in general if fn ↘ g with fn continuous increasing, then g

is increasing and right continuous (choose n such that fn(x)− f(x) < ε; then choose δ such

that fn(x+ δ)− fn(x) < ε).

For continuity from the left it suffices to prove θ(pc) = 0. Suppose θ(pc) > 0. Then by

the previous theorem, we can find L0 such that

Cpc(L0, L0) > 1− cλ

as in the hypothesis of the scaling lemma. But since Cp(L0, L0) is a polynomial in p it is

continuous, so for ε sufficiently small

Cpc−ε(L0, L0) > 1− cλ,

but then by the previous theorem θ(pc − ε) > 0, a contradiction.

Symmetry and Scale Invariance. Let us now observe that overall symmetry (or balance

between the two colors) implies scale invariance of “all” crossing events.
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Corollary (Hexagonal tiling at criticality). Consider hexagonal tiling at p = 1/2 as before.

Then for any a, b ∈ N+ and k ∈ N+,

C(2ka, b) ≥ 16−k > 0.

Proof. Here by blatant symmetry given any “perfect square” at any scale, the probability of

a crossing is 1/2. Thus,

C(2ka, a) ≥ 1

4
C(2k−1a, b)2 ≥ · · · ≥

(
1

4

)k
· C(a, a)2k =

(
1

4

)2k

.

Here, of course, the actual bound is not so important as the fact that the crossing

probability of ever longer rectangles remain strictly bounded from below. Scale invariance

follows from overall symmetry of the (critical) model (the color of each hexagon can be

switched for free); once the probability of crossing of a simple shape (e.g., square) is seen

to be scale invariant, then by RSW estimates probabilities of crossings of more complicated

objects are also scale invariant.
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