III. Rescaling and Scale Invariance

Helen K. Lei

Caltech, W'02

We now restrict attention to d = 2 and collect here some scale invariant estimates. **RSW Estimates.** The starting point is the so-called Russo-Seymour-Welsh estimate, which expresses the crossing probability of a (longer) rectangle in terms of that of a square. We start with the simplest version whose proof is due to Smirnov:

Lemma (RSW: Hexagonal tiling at criticality). Consider hexagonal tiling where hexagons are blue or yellow with probability $\frac{1}{2}$. If $C(a, b) := \mathbb{P}(\mathcal{C}(a, b))$ denotes the crossing probability of an $a \times b$ rectangle, then

$$C(2a,b) \ge \frac{1}{4} \cdot C(a,b)^2.$$

Proof. Let R(a, b) denote an $a \times b$ rectangle with bottom left corner equal to (0, 0). The starting point is to note that given any left right crossing γ of R(a, b), and γ' being its (geometric) reflection across y = b, the domain below $\gamma \cup \gamma'$ intersected R(a, b) forms a new domain \mathcal{R} in which we can ask new crossing probability questions: we color $\gamma \cup [(a, 0), (2a, 0)] \cup$ [(2a, 0), (2a, b)] blue and $\gamma' \cup [(0, a), (0, 0)] \cup [(0, 0), (a, 0)]$ yellow, and consider the event $\mathcal{G}_b(\gamma)$ of a blue crossing from γ to J and the event $\mathcal{G}_y(\gamma)$ of a yellow crossing from γ' to J'

[picture of domain in question, colored appropriately...]

The key observation is that the events \mathcal{G}_b and \mathcal{G}_y are *dual* and *exhaustive*: there is a blue crossing if and only if there is no yellow crossing. Thus

$$\mathbb{P}(\mathcal{G}_b(\gamma)) + \mathbb{P}(\mathcal{G}_y(\gamma)) = 1.$$

Now by total symmetry of the regions in question and blue-yellow symmetry we conclude

$$\mathbb{P}(\mathcal{G}_b(\gamma)) = \mathbb{P}(\mathcal{G}_y(\gamma)) = \mathbb{P}(\mathcal{G}'_b(\gamma')) = 1/2.$$

(Here ' denotes the fact that we are envisioning the event taking place on the *right* rectangle.)

It is also clear that if both $\mathcal{G}_b(\gamma) \cap \{\gamma \text{ blue}\}$ and $\mathcal{G}_b(\gamma') \cap \{\gamma' \text{ blue}\}$ happen, then we must have a crossing of R(2a, b):

$$\bigcup_{\gamma:[(0,0),(0,b)] \rightsquigarrow [(a,0),(a,b)]; \quad \gamma':[(a,0),(a,b)] \rightsquigarrow [(2a,0),(2a,b)]} [\mathcal{G}_b(\gamma) \cap \{\gamma \text{ blue}\}] \cap [\mathcal{G}_b(\gamma') \cap \{\gamma' \text{ blue}\}] \subseteq \mathcal{C}(2a,b).$$

(Note that here γ' is not necessarily the reflection of γ .)

[picture of $\mathcal{G}_b(\gamma), \mathcal{G}_b(\gamma')$ forming crossing of R(2a, b), with γ' not reflection of γ ...]

It therefore remains to sum up over γ . Here we require the notion of *highest blue crossing:* given a fixed configuration ω , the left right crossings of any rectangle can be *partially ordered* according to the topological region above it and given any two crossings γ, γ' which are not comparable the boundary of the region above *both* of them defines a new crossing higher than each, which ensures the existence of a *maximum* element.

(III)

[picture illustrating lowest crossing and $\gamma \wedge \gamma'$...]

Two things are of interest about highest crossings:

Let Π be the random variable denoting the highest crossing, then the events {Π = γ} over all topological curves joining the left side to the right side of R(a, b) disjointly partitions C(a, b):

$$C(a,b) = \sum_{\gamma: [(0,0), (0,b)] \rightsquigarrow [(a,0), (a,b)]} \mathbb{P}(\Pi = \gamma).$$

The event {Π = γ} is probabilistically independent of the region below γ in R(a, b). (The state of γ being the highest crossing is not disturbed by changing the state of any site above γ.)

From the second item we conclude that $\mathcal{G}_b(\gamma)$ is independent of the event $\{\Pi = \gamma\}$ unless γ hits the *x*-axis, i which case the *domain* of relevant crossing will shrink: it will be determined by the "last time" γ hits the *x*-axis and in case γ hits the *point a* we have $\mathbb{P}(\mathcal{G}_b(\gamma)) \equiv 1$. In any case it is always true that $\mathbb{P}(\mathcal{G}_b(\gamma) \mid \Pi = \gamma) \geq \frac{1}{2}$.

[picture of γ hitting x-axis forming non-trivial "small" domain; picture of γ hitting x-axis at point a, together with γ' forming a crossing of R(2a, b)...]

Summing up, we get that

$$\mathbb{P}(\mathcal{G}_b) := \mathbb{P}\left(\bigcup_{\gamma:[(0,0),(0,b)] \rightsquigarrow [(a,0),(a,b)]} \mathcal{G}_b(\gamma) \cap \{\gamma \text{ blue}\}\right)$$
$$= \sum_{\gamma} \mathbb{P}(\mathcal{G}_b(\gamma) \cap \{\Pi = \gamma\})$$
$$= \sum_{\gamma} \frac{1}{2} \cdot \mathbb{P}(\Pi = \gamma)$$
$$= \frac{1}{2} \cdot C(a,b).$$

Finally, by the FKG inequality,

$$C(2a,b) \ge \mathbb{P}(\mathcal{G}_b \cap \mathcal{G}'_b) \ge \mathbb{P}(\mathcal{G}_b)^2 \ge \frac{1}{4} \cdot C(a,b).$$

The original argument due to Russo (1981) yields a bound for a crossing of $R(\frac{3}{2} \cdot a, a)$ in terms of crossing of the square R(a, a) for any value of p; also the proof does not use duality. We will sketch this argument below. First a simple consequence of the FKG inequality:

Proposition ("Square root trick"). Let A_1, \ldots, A_m be *increasing* events with *equal* probability. Then for $1 \le k \le m$,

$$\mathbb{P}(A_k) \ge 1 - \{1 - \mathbb{P}(\bigcup_{i=1}^m A_i)\}^{1/m},\$$

so in particular, with m = 2, we have

$$\mathbb{P}(A_k) \ge 1 - \sqrt{1 - \mathbb{P}(A_1 \cup A_2)}, \quad k = 1, 2.$$

Proof. We note the set theoretic identity that

$$\left(\bigcup_{i=1}^{m} A_i\right)^c = \bigcap_{i=1}^{m} A_i^c,$$

4

with the A_i^c all being *decreasing* events so that the FKG inequality holds and we have:

1

$$-\mathbb{P}(\bigcup_{i=1}^{m} A_i) = \mathbb{P}((\bigcup_{i=1}^{m} A_i)^c)$$
$$= \mathbb{P}(\bigcap_{i=1}^{m} A_i^c)$$
$$\geq \prod_{i=1}^{m} \mathbb{P}(A_i^c)$$
$$= (1 - \mathbb{P}(A_i))^m.$$

Lemma (RSW). Set $\tau = C(a, a)$. Then

$$C\left(\frac{3}{2}\cdot a,a\right) \ge (1-\sqrt{1-\tau})^3.$$

Proof. (Sketch). Consider the box R(a, a) centered at the origin and R(a, a)' which is R(a, a) shifted *horizontally* by $\frac{1}{2} \cdot a$ to the *right*. It is clear that a crossing of $R(\frac{3}{2} \cdot a, a)$ would be accomplished if there are *horizontal* crossings of both boxes together with a *vertical* crossing of the R(a, a)' to *join them*:

[picture of RSW argument: three crossings forming a crossing of larger rectangle with labels, π, α, β ...]

Some thought reveals that some care is required to specify the beginning and ending points of these crossings; the precise prescription is as follows:

- Π[±]: ∃π an open *left right* crossing of R(a, a) whose *last* intersection (oriented from left to right) with the *vertical midline* of R(a, a) is *above* or *below* the x-axis;
- A_{π}^{\pm} : $\exists \alpha$ an open *path* from *top* of R(a, a)' to π'_r, π_r , respectively, where $\pi_r \subset \pi$ is the

last portion of π : from its last intersection with the vertical midline of R(a, a) to the right boundary of R(a, a) and π'_r is its reflection across the right boundary of R(a, a);

B[±]: ∃β an open *left right* crossing of R(a, a)' starting on the top or bottom half of R(a, a)';

we have then that

$$B^+ \cap \bigcup_{\pi} (A_{\pi}^- \cap \Pi^-) =: B^+ \cap G^- \subseteq \mathcal{C}\left(\frac{3}{2} \cdot a, a\right),$$

so that G^- is the event of a left right crossing of B(a, a) together with a crossing connecting it to the top of B(a, a)': an *increasing* event.

By symmetry of the regions in questions, it is clear that

$$\mathbb{P}(A_{\pi}^+) = \mathbb{P}(A_{\pi}^-), \quad \mathbb{P}(B^+) = \mathbb{P}(B^-),$$

so we have by the square root trick that

$$\mathbb{P}(B^+) \ge 1 - \sqrt{1 - (B^+ \cup B^-)} = 1 - \sqrt{1 - \tau},$$

so that by the FKG inequality

$$C\left(\frac{3}{2} \cdot a, a\right) \ge \mathbb{P}(B^+ \cap G^-) \ge (1 - \sqrt{1 - \tau}) \cdot \mathbb{P}(G^-).$$

It remains to estimate $\mathbb{P}(G)$. Here as in the previous argument we will replace the event Π^- by L_{Π}^- which adds the additional requirement that π is the *lowest* left right crossing of R(a, a), so that

$$G \supseteq \bigcup_{\pi} A_{\pi}^{-} \cap L_{\pi}^{-}.$$

We note again that supposing π only intersects the *vertical line of symmetry* once, A_{π}^{-} takes place above the region bounded by π and is therefore independent of L_{π}^{-} so that

$$\mathbb{P}_p(A_\pi^- \mid L_\pi^-) = \mathbb{P}_p(A_\pi^-).$$

(III)

(III)

In case multiple intersections occur, we observe that "small regions" would be formed in B(a, a)' by π and since A_{π}^{-} is *independent* of the state of these regions, we may as well replace the conditioning (without changing the conditional probability) by the condition that the *entirety* of such regions (and their boundary, which are portions of π) are blue, and so by the FKG inequality, we would obtain

$$\mathbb{P}_p(A_{\pi}^- \mid L_{\pi}) = \mathbb{P}_p(A_{\pi}^- \mid \{\text{small regions blue}\}) \ge \mathbb{P}(A_{\pi}^-).$$

(The probability is in fact *higher* here since the crossing α has more possible landing points due to the "protrusions" caused by the multiple intersections.)

[picture of multiple intersection with vertical axis, with region "below" π shaded...]

Now it is clear that $\mathbb{P}(A_{\pi}^{-}) \leq \tau$ since the relevant *event* is contained in the event of a *top bottom* crossing of R(a, a)'. Therefore, summing up and using the square root trick to estimate $\mathbb{P}(A_{\pi}^{-})$, we obtain

$$\mathbb{P}(G) \ge (1 - \sqrt{1 - \tau}) \cdot \mathbb{P}(\Pi^{-}).$$

Applying the square root trick to Π^- yields the final factor of $1 - \sqrt{1 - \tau}$.

First Consequences.

We collect here some corollaries of the RSW estimate via iteration. What turns out to be useful (in addition to crossings of rectangles) are crossings in *annuli*:

Definition. Let $0 < a < b \in \mathbb{N}^+$ and denote by A(a, b) the corresponding *annulus*:

$$A(a,b) = R(b,b) \setminus R(a,a).$$

By abuse of notation this may also denote the corresponding event of a *blue ring* inside the annulus or its *probability*.

Corollary. For all $p \in [0, 1]$,

- $C_p(2a, a) \ge C_p(\frac{3}{2}a, a)^2 \cdot C_p(a, a);$
- $C_p(3a, a) \ge C_p(2a, a)^2 \cdot C_p(a, a);$
- $A_p(a, 3a) \ge C_p(3a, a)^4$

Proof. These statements are proved by *pasting together* simpler events to form the event in question and estimating the probability by the FKG inequality. We have:

• A crossing of R(2a, a) can be achieved as:

[picture of achieving this event... left right crossings in R(2a, a) and R(2a, a)' which is its shift by a to the right... top bottom crossing in middle square R(a, a)' to "stitch" the two together...]

- By increasing the scale this can be done exactly as the previous item.
- A ring in the relevant annulus can be guaranteed by the crossing of four rectangles congruent to R(3a, a):

[picture of achieving this event... square annulus with four crossings in the four relevant rectangles...]

As a consequence, we obtain the following:

Theorem (Harris theorem). If $p > p_c$, then with probability one (w.p.1) the dual model does not contain an infinite cluster.

Proof. This follows from two statements:

- For all a > 0, $C_p(a, a) \gtrsim \theta(p)^2$ (recall that $\theta(p) = \mathbb{P}(|C(0)| = \infty)$; here \gtrsim means greater than or equal to up to a *numerical* constant).
- If $\liminf_{a} C_p(a, a) > 0$, then there is no dual infinite cluster.

The first item follows from the FKG inequality: Let $\{l_a, r_a, t_a, b_a\}$ denote the events that the origin is connected to the *left, right, top, bottom* boundaries, respectively. Then

- the four events are *increasing* and have the same probability by *symmetry*;
- it is clear that

$$l_a \cup r_a \cup t_a \cup b_a \supseteq \{0 \rightsquigarrow \infty\}$$

so that together with the previous item

$$4 \cdot \mathbb{P}(l_a) \ge \mathbb{P}(l_a \cup r_a \cup t_a \cup b_a) \ge \theta(p);$$

• $l_a \cap r_a \subseteq \mathcal{C}(a, a).$

[picture of origin being connected to boundary of square...]

We have therefore by the FKG inequality that

$$C(a,a) \ge \mathbb{P}(l_a \cap r_a) \ge \mathbb{P}(l_a) \cdot \mathbb{P}(r_a) = \mathbb{P}(l_a)^2 \ge \left(\frac{1}{4} \cdot \theta(p)\right)^2.$$

For the second item, $\liminf_a C(a, a) > 0$ means that $A_p(a, 3a)$ is uniformly bounded below as $a \to \infty$. So given any $N \in \mathbb{N}^+$, we can set up N concentric logarithmic annuli:

$$A(a, 3a), A(3a, 9a), A(9a, 27a), \dots A((N-1)a, 3(N-1)a),$$

where $A_p(k \cdot a, 3k \cdot a) > \alpha > 0$, for some α . Also, the presence or absence of circuits in these annuli are clearly *independent* events.

[picture of dual origin being severed from ∞ by sequence of annuli...]

Therefore,

$$\mathbb{P}(|\mathcal{C}(0^*)| = \infty) \le \mathbb{P}\left(\bigcap_{k=1}^{N} A^c(ka, 3ka)\right) \le (1-\alpha)^N$$

for any N and so there is no dual infinite cluster.

Exercise. Redo the proof of the first item in the above theorem using the *square root trick* to show that

$$C(a, a) \ge (1 - (1 - \theta(p))^{1/4})^2.$$

Rescaling. More dramatic results can be derived by applying the RSW estimates on many scales. We start with the following *rescaling lemma*:

Lemma. Suppose at some scale a > 0, we have $C(2a, a) \ge 1 - c\lambda$ with c = 1/16 for some $\lambda > 0$, then

$$C(2^{k+1}a, 2^ka) \ge 1 - c\lambda^{2^k}, \quad \forall k \ge 1.$$

Proof. First we note that

[picture crossing of R(4a, a) as "stitching" of 3 crossings of R(2a, a) and 2 crossings of R(a, a)...]

$$C(4a, a) \ge C(2a, a)^3 \cdot C(a, a)^2 \ge C(2a, a)^4,$$

where the last inequality is since $C(2a, a) \leq C(a, a)^2$:

[picture of crossing of R(2a, a), with dash in middle, implying crossings of the two squares...]

Therefore,

$$C(4a, a) \ge (1 - c\lambda)^4 \quad (= 1 - 4c\lambda + O(\lambda^2) \quad)$$

> 1 - 4c\lambda.

Next we double in the *vertical* direction. Restricting crossing to the top or bottom half (and these events are *independent*, we have that

$$C(4a, 2a) \ge 1 - \mathbb{P}(\{\text{no crossing in top half}\} \cap \{\text{no crossing in bottom half}\})$$

= 1 - (1 - C(4a, a)) \cdot (1 - C(4a, a))
\ge 1 - (4c\lambda)^2 (since 1 - C(4a, a) \le 4c\lambda)
= 1 - c\lambda^2,

since c = 1/16.

picture of crossing of double rectangle by *restricting* to each half... versus picture of

crossing which traverses *both* halves...]

Iteration now gives the result: Assume as *inductive hypothesis* that $R(2^k a, 2^{k-1}a) \geq 1-c\lambda^{2^{k-1}}$ and run the above argument to double the scale both horizontally and vertically. \Box

As a consequence we can characterize *supercriticality* by *crossing probabilities* of squares:

Theorem.

$$p > p_c \iff \liminf_{a \to \infty} C(a, a) = 1.$$

Proof. First suppose $\liminf_{a\to\infty} C(a,a) = 1$. Let

$$0 < \lambda < 1$$

and define the *length scale* $0 < L_0 < \infty$ to be large enough so that the *rescaling hypothesis* of the previous lemma is satisfied:

$$L_0(p,\lambda) = \inf_a \{a : C(2a,a) > 1 - c\lambda\}, \qquad c = 1/16.$$

We know that $L_0 < \infty$ since recall that by the RSW estimates

$$C(2a, a) \ge C(\frac{3}{2} \cdot a, a)^2 \cdot C(a, a) \ge (1 - \sqrt{1 - C(a, a)})^3 \cdot C(a, a),$$

and the right hand side tends to 1 by assumption.

We can now perform an *overlapping rectangles* construction to create a connection to ∞ :

[picture of connection to infinity via crossings of larger and larger overlapping rectangles of the same aspect ratio... alternately "horizontal" and "vertical"...]

(III)

The probability of all such connections being realized is $\prod_{k\geq 1}(1-c\lambda^{2^k}) > 0$ (since $\lambda < 1$); given these connections, the origin is connected to infinity if we occupy L_0 vertical bonds along the *x*-axis. Thus,

$$\mathbb{P}_p(\{0 \rightsquigarrow \infty\}) \ge p^{L_0} \cdot \prod_{k \ge 1} (1 - c\lambda^{2^k}) > 0.$$

Conversely suppose $p > p_c$. By the rescaling lemma it is sufficient to show that

 $\exists a > 0, \quad C(2a, a) > 1 - c\lambda \quad \text{for some } \lambda < 1, c = 1/16.$

We have that $(R_n := R(n, n))$

$$\mathbb{P}_p(\{(\partial R_n \rightsquigarrow \infty\}) \ge \mathbb{P}_p(\{\exists x \in R_n : x \rightsquigarrow \infty\})$$
$$\xrightarrow[n \to \infty]{} \mathbb{P}_p(\{\exists \text{ an infinity cluster}\})$$
$$= \psi(p) = 1.$$

(Recall that $\psi(p) = 1$ follows from $\theta(p) > 0$ via the Kolmogorov 0–1 law.) Thus given any $\varepsilon > 0$, for $n \ge n_0$ sufficiently large,

$$\mathbb{P}_p(\{\partial R_n \rightsquigarrow \infty\}) > 1 - \varepsilon.$$

Next let $L \gg n$ and consider "coarse grained" events $\{l_{n,L}, r_{n,L}, t_{n,L}, b_{n,L}\}$ that there is a connection from ∂R_n to the left, right, top, bottom of ∂R_L .

[picture of coarse grain connection between small box and large...]

As before, we have

$$\varepsilon > 1 - \mathbb{P}_p(\{\partial R_n \rightsquigarrow \infty\}) = \mathbb{P}_p(\{\partial R_n \rightsquigarrow \infty\}^c) \ge \mathbb{P}_p(l_{n,L}^c \cap r_{n,L}^c \cap t_{n,L}^c \cap b_{n,L}^c).$$

Since all these are *decreasing events*, we have by the FKG inequality that

$$\mathbb{P}_p(l_{n,L}^c) \le \varepsilon^{1/4},$$

and similarly for the others. Again by the FKG inequality,

$$\mathbb{P}_p(l_{n,L} \cap r_{n,L}) \ge (1 - \varepsilon^{1/4})^2.$$

Now a *left right* crossing of r_L emerges if there is a blue circuit in $A_{n,L}$ (an event which is *independent* of $l_{n,L}, r_{n,L}$, etc.).

Let us now take *L* large and set up logarithmically many annuli, each of which gives an *independent* chance of containing a *blue circuit*, all with probability bounded by some $\alpha > 0$: Indeed, we have that $C(a, a) \ge \left(\frac{1}{4} \cdot \theta(p)\right)^2 > 0$ on all scales *a* (since $p > p_c$) as in the proof of the Harris theorem and so by RSW, the probability of existence of a *circuit on* all scales is also strictly bounded from below (thanks for Helge Krüger for pointing out that some argument along these lines was missing in the version given in lecture).

[picture of construction of left right crossing from "half coarse grain crossings" and a circuit...]

This finally yields by the FKG inequality the estimate

$$C(L,L) \geq \mathbb{P}_p\left(\left(\ell_{n,L} \cap r_{n,L}\right) \cap \left(\bigcup_{O(\log(L/n)) \text{ annuli}} \{\exists \text{ blue circuit}\}\right)\right)$$
$$\geq \mathbb{P}_p(\ell_{n,L} \cap r_{n,L}) \cdot \mathbb{P}_p\left(\bigcup_{O(\log(L/n)) \text{ annuli}} \{\exists \text{ blue circuit}\}\right)$$
$$\gtrsim (1 - \varepsilon^{1/4})^2 \cdot \log(L/n)\alpha,$$

which can clearly be made arbitrarily close to one.

Exercise. Show that if $p > p_c$, then for all a > 0,

$$C(a,a) \ge \theta(p).$$

(Hint: consider a "9–square" construction and its shift and use translation invariance to show that any connection $0 \rightsquigarrow \infty$ must cross a square of any scale.)

We can now also show *continuity of transition:*

Theorem. The function $\theta(p)$ is continuous at p_c . In particular $\theta(p_c) = 0$.

Proof. First we show that $\theta(p)$ is continuous from the right. To this end note that

- $C_p(n,n)$ is a *continuous increasing* function of p and
- $C_p(n,n) \searrow \theta(p).$

Now right continuity follows since in general if $f_n \searrow g$ with f_n continuous increasing, then g is increasing and right continuous (choose n such that $f_n(x) - f(x) < \varepsilon$; then choose δ such that $f_n(x + \delta) - f_n(x) < \varepsilon$).

For continuity from the left it suffices to prove $\theta(p_c) = 0$. Suppose $\theta(p_c) > 0$. Then by the previous theorem, we can find L_0 such that

$$C_{p_c}(L_0, L_0) > 1 - c\lambda$$

as in the hypothesis of the scaling lemma. But since $C_p(L_0, L_0)$ is a polynomial in p it is continuous, so for ε sufficiently small

$$C_{p_c-\varepsilon}(L_0, L_0) > 1 - c\lambda,$$

but then by the previous theorem $\theta(p_c - \varepsilon) > 0$, a contradiction.

Symmetry and Scale Invariance. Let us now observe that overall symmetry (or balance between the two colors) implies scale invariance of "all" crossing events.

Corollary (Hexagonal tiling at criticality). Consider hexagonal tiling at p = 1/2 as before. Then for any $a, b \in \mathbb{N}^+$ and $k \in \mathbb{N}^+$,

$$C(2^k a, b) \ge 16^{-k} > 0.$$

Proof. Here by blatant symmetry given any "perfect square" at any scale, the probability of a crossing is 1/2. Thus,

$$C(2^{k}a,a) \ge \frac{1}{4}C(2^{k-1}a,b)^{2} \ge \dots \ge \left(\frac{1}{4}\right)^{k} \cdot C(a,a)^{2k} = \left(\frac{1}{4}\right)^{2k}.$$

Here, of course, the actual bound is not so important as the fact that the crossing probability of ever longer rectangles remain *strictly bounded from below. Scale invariance* follows from overall symmetry of the (*critical*) model (the color of each hexagon can be switched for free); once the probability of crossing of a simple shape (e.g., square) is seen to be scale invariant, then by RSW estimates probabilities of crossings of more complicated objects are also scale invariant.

References.

1. Lectures on two-dimensional critical percolation by W. Werner. http://arxiv.org/abs/0710.0856

2. Percolation by G. Grimmett. Springer–Verlag, Berlin Heidelberg (1999).

3. *Percolation and Random Media* by J. T. Chayes and L. Chayes. Lecture notes for Les Houches, summer 1984.