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Here we will show that percolation for the square lattice in d = 2 has pc = 1/2. Similar

arguments yield the same result for hexagonal tiling (or, equivalently, site percolation on the

triangular lattice).

Correlations and Characteristic Length. We first introduce the connectivity function.

Definition. Let x ∈ Zd and consider the event

T0x = {ω : x ∈ Cω(0)}

that x is connected to the origin.

[picture of 0 x...]

The connectivity function is the probability of this event:

τ0x := Pp(T0x).

The observation that the event {0 x} ⊇ {0 y} ∩ {y  x} implies subadditivity and

hence the existence of a certain limit.

[picture 0 x via 0 y...]
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Proposition. Consider (without loss of generality) x ∈ Rd along the x–axis. Then the limit

m(p) := lim
x→∞

(
− log τ0x

x

)
= inf

x≥1

(
− log τ0x

x

)
≥ 0

exists and we have the a priori bound

τ0x ≤ e−m(p)x,

so that in particular m(p) is decreasing as a function of p.

Proof. Let x, y ∈ Zd, then since as observed T0x ⊇ T0y ∩ Tyx , we have by the FKG inequality

and translation invariance that

τ0x ≥ τ0y · τ0(y−x)
.

It follows that

log τ0x ≥ log τ0y + log τ
0(y−x)

,

so (− log τ0x) ≥ 0 (since 0 ≤ τ0x ≤ 1 is a probability) is subadditive. The existence of limit

now follows as in the case of the connectivity constant for SAW. The a priori estimate follows

from the realization of m(p) as an infimum.

Next we observe that m(p) is equivalent to the length scale L∗0(p) defined via the rescaling

hypothesis for the dual model :

Proposition. Let us define L∗0(p, λ) to be the the smallest length for which the dual model

satisfies the scaling hypothesis for c = 1/16 some λ > 0 (here we write C∗ to emphasize we

are describing crossing in the dual model)

C∗(2L∗0, L
∗
0) ≥ 1− cλ,

(so that from the scaling lemma

C∗(2k+1L∗0, 2
kL∗0) ≥ 1− cλ2k . )
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Then for suitable choice of λ, there exists constants c′, c′′ such that

1

L∗0
≤ m ≤ c′

L∗0
+
c′′ logL∗0
L∗0

.

Proof. First it is observed that if the four (overlapping) 2L×L rectangles around the origin

are all crossed (the long way) by dual bonds, then T
0(L,0)

cannot occur:

[picture of 0 severed from (L, 0) with L,−L etc., labeled... ]

Therefore by the FKG inequality applied to these four crossing events,

τ
0L
≤ 1− C(2L,L)4.

Setting L = 2kL∗0, we conclude from the scaling lemma that

τ
0L
≤ 1− (1− cλ2k)4 ( ≤ 1

4
· λ2k)

≤ e
− 1

L∗0
·L

( = e−2k),

for suitable choice of λ. By the realization of m(p) as the infimum, we immediately conclude

m(p) ≥ 1

L∗0
.

Conversely, we note that by duality the absence of a crossing in R(L∗0 − 1, 2(L∗0 − 1)) by

the dual model is equivalent to a crossing the short way in the original model:
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[picture of crossing long way of rectangle by dual and direct crossing in dash...]

This yields the estimate

1− C(L∗0 − 1, 2(L∗0 − 1)) = Pp(
⋃

a∈U,b∈V

T
ab

)

≤
∑

a∈U,b∈V

τ
ab
,

where U, V denote the sites on the long edges of the rectangle. Noting that

• τ
ab
≤ e−m(L∗0−1), ∀a ∈ U, b ∈ V ;

• |U | · |V | = 4(L∗0)2,

we obtain the bound (since L∗0 is smallest such C∗(2L∗0, L
∗
0) ≥ 1− cλ)

cλ ≤ 1− C(L∗0 − 1, 2(L∗0 − 1)) ≤ 4L2
0 · e−m(L0−1),

from which the bound m ≤ c′

L∗0
+

c′′ logL∗0
L∗0

follows by taking logarithms.

Remark. Note that the above proposition also shows that up to constants and logarithms,

the precise definition of m is not important (that is, exactly how x tends to infinity is not

so essential).

Recall (from the overlapping rectangles construction) that

L0(p) <∞ ⇐⇒ p > pc,

so it must be the case that

L0(pc) =∞.

Also, considering L∗0 to be associated to the dual model as in the previous proposition, we

have from the above that

L0(p∗) <∞ ⇐⇒ p∗ > p∗c =⇒ p ≤ pc,

4 η.κ.Λ



(IV)

but this does not rule out the possibility that L0(p∗) becomes ∞ strictly before pc (equiva-

lently, m(p) becomes 0 strictly before pc). These considerations lead to the definition of the

susceptibility and another critical point.

Susceptibility and Exponential Decay of Correlations. The susceptibility is defined

as the expected value of |C(0)|:

χ(p) := Ep(|C(0)|(ω))

= Ep

(∑
x∈Zd

1T0x (ω)

)
=
∑
x∈Rd

τ0x .

Definition. The critical point πc is then defined as

πc = sup{p ∈ (0, 1) : χ(p) <∞}.

From this definition it is clear that

πc ≤ pc.

Let us observe that since (roughly)

Ep(|C(0)|) =
∑
x∈Rd

τ0x

.
∑
x∈Rd

e−m(p)|x|

∼
∑
k

e−m(p)k <∞

if m(p) > 0, it must be the case that m(πc) = 0. In fact, m(p) goes to zero continuously.

Proposition. There exists some p′ ≤ πc (≤ pc) such that limp→p′m(p) = 0.

Proof. Let us consider truncated correlation functions:

τT
0x

= Pp({0 x inside {~x : −T ≤ x1, . . . , xd ≤ T}}).
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[picture of connection inside strip versus using bonds outside...]

It is clear that the associated mT (p) (so that, in particular, τT0x ≤ e−m
T (p)x) is a

continuous, decreasing function of p (continuous since τT
0x

is a polynomial in p). It is also

the case that mT (p)↘ m(p) as T →∞:

• Since τT
0n
≤ τ0n , it is clear that

mT (p) ≥ m(p).

• On the other hand, since m(p) is realized as the infimum, given ε > 0,

τ0n ≥ e−(m(p)−ε)n, ∀n ≥ n0 sufficiently large.

• Therefore, since τT
0n
↘ τ0n , we have

lim
T→∞

e−m
T (p)n0 ≥ lim

T→∞
τT
0n

= τ0n ≥ e−m(p−ε)n0 ,

so we also have limT→∞m
T (p) ≤ m(p).

Since m(p) is a decreasing limit of continuous, decreasing functions, it is left continuous.

Next we see that m(p) is also right continuous: Suppose m(p0) > 0. Then

L∗0(p0) ∼ 1

m(p0)
<∞,

so that in the dual model, we have that

C∗(2L∗0, L
∗
0) ≥ 1− cλ.

Since C∗(2L∗0, L
∗
0) is continuous in p, for ε > 0 sufficiently small, the same is true, that is

L∗0(p) ≤ L∗0(p+ ε) <∞ =⇒ m(p0 + ε) > 0.

Finally, if m(πc) > 0, then the applying the rescaling lemma (to form circuits in ever

larger annuli, via the RSW estimates) and the above continuity argument to the dual model
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we would deduce that χ(πc + ε) <∞ (exercise) contradicting the definition of πc.

[picture of dual circuit of scale L preventing connection to |x| > L...]

To complete the characterization of πc as the point at which m becomes 0, we will need

the converse to the above proposition (p < πc ⇒ m(p) > 0). This will be provided by the

following correlation inequality :

Proposition (Lieb–Simon inequality). Let D be a cube centered at the origin. For z ∈ ∂D,

let

τ ′
0z

= Pp{0 z inside D}.

[picture of path contributing to τ ′
0z

together with τ0z ...]

Then for x /∈ D,

τ0x ≤
∑
z∈∂D

τ ′
0z
· τzx .

(Note that the BK–inequality would immediately give

τ0x ≤
∑
z∈∂D

τ0z · τzx ,

which is a worse bound than we have stated.)
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Proof. This follows from the fact that

T0x =
⋃
z∈∂D

T ′
0z
◦ Tzx ,

where τ ′
0z

:= Pp(T ′0z). This is understood as follows: let

CD(0) = C(0) ∩ D̄

be the cluster of the origin lying entirely inside D̄. Then

T0x = {ω : ∃z ∈ ∂D : ω ∈ T ′
0z
◦ Tzx}.

Indeed, given any ω ∈ T0x , orient a path (any path) γ : 0 x, then

z = {γ(t) : γ first exits D at time t}.

Then clearly

γ([0, t]) ∩ Zd ⊂ CD(0).

The remainder of γ is either outside CD(0) or, if γ re–enters D and intersects CD(0) again

at some point z′, then we may replace the first part of γ by some path γ′ : 0  z′ lying

entirely inside D and continue with γ until the next time γ exits ∂D.

[picture of connection between 0 and x with “rewiring” at z′...]

That this procedure terminates shows that ω ∈ T ′
0z
∩ Tzx , since it produces a path

γ̃ : 0 x such that the portion of γ̃ from the origin to the first time it exits ∂D lies inside
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CD(0) and the remainder lies outside CD.

We can now finish by the BK inequality :

τ0x = Pp(
⋃
z∈∂D

T ′
0z
◦ Tzx) ≤

∑
z∈∂D

Pp(T ′0z ◦ Tzx))

≤
∑
z∈∂D

τ ′
0z
· τzx .

Theorem. The critical point πc characterized m:

p < πc ⇐⇒ m(p) > 0 and lim
p↘πc

m(p) = 0.

Proof. It only remains to prove that p < πc =⇒ m(p) > 0. We have that

χ(p) =
∑
x

τ0x <∞ =⇒ e−α =:
∑
z∈∂D

τ ′
0z
< 1, for ‖D‖ := diam(D) sufficiently large.

For x� ‖D‖, by the Lieb–Simon inequality we have

τ0x ≤ e−α ·
∑
z∈∂D

eατ ′
0z
· τzx =: e−α ·

∑
z∈∂D

wz · τzx ,

where it is noted that ∑
z∈∂D

wz = 1.

We may now apply the inequality to τzx to obtain

τ0x ≤ e−2α ·
∑
z∈∂D

wz
∑

z′∈∂(D+z)

wz′−z · τz′x ≤ e−2α,

since τ
z′x
≤ 1 and the w’s sum to 1.
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[picture of one iteration, with 0, z, z′, x labeled...]

Iterating this |x|/‖D‖ times by translating the relevant boxes and applying the inequality,

we obtain that

τ0x ≤ e−α|x|/‖D‖ · F (w, τ) ≤ e−α|x|/‖D‖ (=⇒ L∗0 <∞ =⇒ m(p) > 0).

So far we have that if p < πc, then there is exponential decay of correlations for the direct

model and finite characteristic length L∗0 ∼ 1
m(p)

for the dual model, which, after applying the

rescaling lemma implies that there is percolation in the dual model, i.e., p∗ > p∗c . Therefore,

if the model is self–dual (the dual model is the same as the direct) and we can show that

pc = πc

then we would have that

{ pc = p∗c , p+ p∗ = 1, p < pc ⇒ p∗ > pc } =⇒ pc = 1/2.

The Kesten Theorem. The goal here is to show that

[πc, pc] = {pc},

that is, there is no gap. We already know that

• If p ≥ πc, then

m = 0 =⇒ L∗0 =∞ =⇒ p∗ ≤ p∗c ,

which implies that ∃0 < σ′ < 1 such that

C∗(L,L) ≤ σ′, at all scales L,

since otherwise the rescaling lemma can be applied to the dual model, contradicting

p∗ ≤ p∗c .
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• If p ≤ pc, then ∃0 < σ < 1 such that

C(L,L) ≤ σ, at all scales L,

since otherwise the rescaling lemma applied in the direct model would yield supercrit-

icality, contradicting p ≤ pc.

Therefore if p ∈ [πc, pc], then the crossing probability is severely constrained at all scales:

1− σ′ ≤ C(L,L) ≤ σ, at all scales L.

We will use this and Russo’s formula to deduce that if p ∈ [πc, pc], then

d

dp
Cp(L,L)→∞, as L→∞,

so that in particular we can arrive at the contradiction that ∀p ∈ [πc, pc] and ∀ε > 0 such

that p+ ε ∈ [πc, pc],

lim
L→∞

Cp+ε(L,L) > 1,

and we are forced to conclude that [πc, pc] = {pc}.

Let us first tally the relevant observations and ingredients:

• Russo’s formula requires us to count the number of articulation bonds of the crossing

event and thus our goal boils down to showing that the number of pivotal bonds tends

to infinity as L→∞. It is easy to see that given ω, for an edge e to be an articulation

bond for a blue left right crossing, the dual sites above and below (or to the left and

right) of e must be connected to the top and bottom of the square:
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[picture of horizontal and vertical articulation bond (two possibilities for vertical) with

connection between the two halves of the blue crossing being disrupted by the dual

connections to the top/bottom...]

• Next recall the notion of the lowest left right crossing and note that all dual sites below

the lowest crossing must already be connected to the bottom of the square (otherwise,

a lower crossing would be possible):

[picture of lowest crossing with all dual sites below connected to the bottom with the

possibility of a lower crossing disrupted by such a connection...]

• Finally, the scale invariant estimates on the crossing probability for p ∈ [πc, pc] implies

that a careful multiscale construction and RSW estimates would lead to an estimate

for the number of articulation bonds which blows up with L: we look at the lowest

crossing restricted to the bottom half of the square, condition on the region formed by

the “first” articulation bond and find many more in the unconditioned region.

[picture of “first” articulation bond and “wedge” unconditioned region formed and

divided into scales...]

12 η.κ.Λ



(IV)

We start with some uniform estimates.

Lemma. Let p ∈ [πc, pc] and let BL be the event of a left right crossing of R(L,L) which

takes place entirely in the lower half of R(L,L).

[picture BL...]

Then there exists 0 < s < 1 such that for all p ∈ [πc, pc],

s ≤ Pp(BL) ≤ 1− s, uniformly in L.

(In particular, we may take

s = (1−
√
σ′)3 · (1− σ′). )

Proof. This follows immediately from the bound for R(L,L), since BL is implied by a crossing

of R(L, 1
2
L) which can be bounded by Cp(

1
2
L, 1

2
L) by the RSW estimates, so

1 > σ > C(L,L) ≥ Pp(BL)

≥ Cp(L,
1

2
L) ≥ Cp(

3

4
L,

1

2
L) · Cp(

1

2
L,

1

2
L)

≥

(
1−

√
1− Cp(

1

2
L,

1

2
L)

)3

· Cp(
1

2
L,

1

2
L)

≥ (1−
√
σ′)3 · (1− σ′)

> 0

Lemma. Let p ∈ [πc, pc] and let

QL = {ω : ∃ ≥ 1 articulation bond for (L,L)

in the bottom right quadrant of R(L,L)}.
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[picture of QL: “four arm” centered at bottom right quadrant with left right crossing in

the lower half...]

Then there exists t(σ′) > 0 such that for all p ∈ [πc, pc],

Pp(QL ∩BL) ≥ t(σ′), uniformly in L.

(In particular, we may take t(σ′) = s2 where s is from the previous lemma.)

Proof. Here we will make use of conditioning again. Let us enumerate the crossings of BL:

BL = {γ1, . . . , γn}

and let

Πi = {ω : γi is the lowest crossing}, i = 1, . . . , n,

so that BL = ∪ni=1Πi as a disjoint union, so that

Pp(· | BL) =
Pp(· ∩BL)

Pp(BL)
=
∑
i

Pp(· ∩ Πi)

Pp(BL)

=
∑
i

Pp(· | Πi) ·
Pp(Πi)

Pp(BL)
=
∑
i

Pp(· | Πi) · Pp(Πi | BL),

where the last inequality is due to the tautology that Pp(Πi) = Pp(Πi ∩BL).

Certainly,

Pp(QL) ≥ Pp(QL ∩BL) = Pp(QL | BL) · Pp(BL),

so we have from the previous partitioning that

Pp(QL) ≥ Pp(BL) ·
∑
i

Pp(QL | Πi) · Pp(Πi | BL).

Now we use the observations that

• conditionining on Πi means that there is a dual connection to the bottom “below”

each site on Πi so what is required to form an articulation bond is a dual connection

to the top of R(L,L);
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• Πi being the lowest crossing means that percolation in the unconditioned region above

Πi is independent of Πi (that is, the conditioning here is basically trivial)

[picture of R(L,L) divided into quadrants with the lowest crossing with conditioned

region shaded and dual connection to the top in the correct quadrant...]

The above implies that

Pp(QL | Πi) ≥ Pp(∃ a dual crossing from the top of R(L,L) to Πi in the right half of R(L,L))

≥ Pp(∃ a dual top bottom crossing of R(L,L) in the right half of R(L,L))

= Pp(BL)

≥ s,

where 0 < s < 1 is from the previous lemma.

Finally, altogether we therefore have that

Pp(QL) ≥ Pp(BL) ·
∑
i

Pp(QL | Πi) · Pp(Πi | BL)

≥ s2 ·
∑
i

Pp(Πi | BL)

= s2 > 0.

Theorem (The Kesten theorem). In two dimensions, πc = pc.

Proof. To prove the theorem it remains to carry out the conditioning on “wedge” described

earlier in order to estimate the total number of articulation bonds. A picture of the region

of interest has already appeared, but let us note the important observations:
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• First note that if QL occurs, then we may condition on the lowest left right crossing

together with another dual path which is the rightmost top bottom crossing. Let us

denote the resulting region containing the top left corner U (this is a random region).

• The restriction of the articulation bond to the lower right quadrant together with the

event BL implies that the wedge U contains the entire top left quadrant of R(L,L).

• The region U is entirely unconditioned, namely, percolation in U is independent of the

events QL, BL.

We can now finish by performing RSW estimates in annuli on many scales : Let

1

2
L = 3N , some N ∈ N+,

so that inside U there are (portions of) N disjoint partial annuli

a1 ∩ U, . . . , aN ∩ U

each of which has independent probability of containing a dual circuit and clearly,

A∗n =⇒ articulation bond at the terminal point of the circuit on Πi,

here A∗n denotes the existence of a circuit in the partial annuli an ∩ U .

[picture of multiscale construction with γ′i, τj labeled...]

Therefore, we may count the number of articulation bonds δ as follows:
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Ep(δ) ≥ P(QL ∩BL) · Ep(δ | QL ∩BL)

≥ t ·
∑
i,j

Ep(δ | γ′i, τj) · ωij.

Here γ′i, τj denotes the two parts forming ∂U and

ωij = Pp(∂U = γ′i ∪ τj)

= Pp({γ′i is part of the lowest left right crossing}

∩ {τj is the rightmost dual top bottom crossing}).

By the RSW construction we have that

Ep(δ | γ′i, τj) ≥
N∑
n=1

A∗n

≥ N · r

= (logL) · r

where

r := r(σ′) (≥ Cp(3L,L)4) > 0

is the uniform lower bound for A∗n from the RSW estimates together with the estimates on

Cp(L,L) (we have bounded the probability of a dual circuit in the partial annulus an∩U by

the probability of the existence of a circuit in the full annulus an). Therefore altogether,

d

dp
Cp(L,L) = Ep(δ)

≥ (logL) · tr ·
∑
ij

ωij

= (logL) · tr

.

Finally, given ε > 0 so that p+ ε ∈ [πc, pc], integration gives that

Cp+ε(L,L) ≥ ε(logL) · tr > 1,
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for L sufficiently large, since tr = (tr)(σ) > 0.

Corollary. We have that pc = 1/2 for bond percolation on the square lattice and hexagonal

tiling (equivalently, site percolation on the triangular lattice).

Proof. Since both models are self–dual and satisfy the RSW estimates, the BK and FKG

inequalities (and hence also the rescaling lemma and its consequences) apply, and this follows

from the Kesten theorem and the discussion before this section.

(Here we mean Whitney duality : G∗ is the dual of G if any cycle of G is a cut of G∗, and

any cut of G is a cycle of G∗. Here a cut partitions the vertex set into two disjoint subsets,

so in the context of percolation, if we draw a blue cycle and color everything else yellow,

then we should have two disjoint clusters of yellow, each of which should be considered

connected.)
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