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To facilitate the description of behavior near criticality we now show by appropriate use

of Russo’s Formula that the multi–arm exponents remain of the same order as at criticality,

provided that we do not exceed the characteristic length.

Theorem. Consider a self–dual percolation model. Then for

n < N < L(p), (j, σ) = (1, B) and (j, σ) = (1, BY BY ),

we have

P0(Aj,σ(n,N)) ∼j,σ P1(Aj,σ(n,N)),

uniformly for P0,P1 between (in the sense of stochastic domination) Pp and Pp∗.

A few observations before we begin the proof:

• Taking P0 = Ppc we see that indeed, Pp(Aj,σ(n,N)) behaves critically provided the

lengths scales are below L(p).

• Let us recall the definition of the characteristic length: let s > 0 be such that at p = pc,

we have for all L

1− s′ ≤ Cpc(L,L) ≤ s;

let

ε0 < min{1− s′, s}.

Then we define the characteristic length by

L(p) = inf
n
{Cp(n, n) ≤ ε0}, p < pc;

L(p) = inf
n
{C∗p(n, n) ≤ ε0}, p > pc,
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so that

L(p)↗∞ as p→ pc.

• Note then that if a model is self–dual, i.e., pc = p∗c , then

L(p) = L(p∗).

Indeed, if e.g., p < pc, then p∗ > p∗c = pc and therefore the definitions of characteristic

lengths directly coincide.

• It also follows that if pt is between p and p∗, then

L(pt) ≥ L(p) = L(p∗).

Indeed, if e.g., p < pc, then p∗ > pc so that pt ∈ (p, p∗) and so by (stochastic) mono-

tonicity L(pt) ≥ L(p). It follows that in the context of the theorem, a single charac-

teristic length L(p) governs all P0,P1 between Pp and Pp∗ , in the sense that provided

we stay below this length scale, we may perform RSW constructions, etc., uniformly in

p for all p ∈ (p, p∗).

Remark. From the last item we see that if the model were not self–dual, then we ought to

consider a characteristic length

L′ = min{L(p), L(p∗)}.

One–Arm. For simplicity let us first describe how one accomplishes this for A1,B the

long way via estimation of four–arm events (of course, here the result can easily follow by

monotonicity):

• Recall that Russo’s Formula for increasing functions says that

d

dp
Pp(A) = Ep(|δA|),

where δA is the set of pivotal edges of the event A.
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• The key observation is then that locally near any pivotal edge for A1,B there emanates

four alternating arms (just as in the case of the event of a left–right crossing).

• Consequently, roughly speaking the event of v being pivotal for A1,B(n,N) can be

decomposed into 3 pieces:

i) a connection from near the origin to v;

ii) an alternating four arm event near v;

iii) a connection between the vicinity of v and boundary of the original box.

[picture of point v on one long arm from 0 to right boundary together with yellow arms

to top and bottom indicating v is pivotal; small square around v: locally four arms...]

• By quasi–multiplicativity and extendability items i) and iii) can be combined and

bounded by the original event A(n,N), so that we are left with an upper bound of

the form

d

dp
Pp(A1,B(n,N)) =

∑
v∈RN

Pp(v pivotal for A1,B(n,N))

.
∑
v∈RN

Pp(A1,B(n,N)) · Pp(v  4,σa ∂Rmv(v)),

for somemv ∼ d(0, v) which represents the vicinity of v. Here σa denotes the alternating

4–arm configuration. Let us dispense with some technical considerations:

◦ We will parameterize the change in p via t:

p(t) = tp1 + (1− t)p0,
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so that

p′(t) = p1 − p0.

By the chain rule (if k indexes the relevant edges/sites, then d
dt

=
∑

k
dp
dt
· ∂
∂pk

) we

can recast the above estimate as

d

dt
Pp(t)(A1,B(n,N)) .

∑
v∈RN

dp

dt
· Pp(A1,B(n,N)) · Pp(v  4,σa ∂Rmv(v))

=
∑
v∈RN

(p1 − p0) · Pp(A1,B(n,N)) · Pp(v  4,σa ∂Rmv(v)).

◦ For simplicity overall we are considering homogeneous models, i.e., the parameter

p is spatially homogeneous, but the arguments here can be adapted to tolerate

some inhomogeneity, provided the resulting measure remains between Pp and Pp∗ .

◦ The previous observation is useful for us in the following way: we would like to

ensure that mv (the vicinity of a pivotal site) is sufficiently “large” so that we can

reasonably estimate the 4–arm event.

To this end let us set

N = 2K , n = 2k, N ′ = 2K−4, n′ = 2k+3

and define

p̃v(t) =

p(t) if v ∈ RN ′ \Rn′

p(0) if v ∈ “boundary layers” (RN \RN ′ ∪Rn \Rn′),

that is, we permit the parameter p to be constant and equal to p0 in a boundary

layer around the annulus A(n,N). So the corresponding measures Pp̃(t) interpolate

between P0 and Pp̃(1) which coincides with P1 inside R′N \R′n.
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[picture of annulus with “boundary layer” and labels...]

But quasi–multiplicativity can still be obtained for Pp̃(1) and so if we show Pp̃(1) ∼

P0, then we would have, together quasi–multiplicativity for P0 that

P1(n′, N ′) ∼ Pp̃(1)(n
′, N ′) ∼ Pp̃(1)(n,N) ∼ P0(n,N) ∼ P0(n′, N ′).

We may then return to (n,N) with one more application of quasi–multiplicativity

for P0 and P1. Thus it is sufficient to work with the Pp̃(t)’s.

◦ Since p̃(t) is constant in the “boundary layer”, the corresponding Russo’s Formula

expression does not contain terms involving v’s too close to the boundary. From

now one we will suppress ˜ and consider the estimate

d

dt
Pp(t)(A1,B(n,N)) .

∑
v∈A(2k+3,2K−4)

(p(1)−p0)·Pp(A1,B(n,N))·Pp(v  4,σa ∂Rmv(v)).

• Dividing by Pt(A1,B(n,N)) we obtain an estimate on the logarithmic derivative:

d

dt
log[Pt(A1,B(n,N))] .

∑
v∈A(2k+3,2K−4)

(p(1)− p0) · Pt(A4,σa(0,mv)).

We therefore must show that

∑
v∈A(2k+3,2K−4)

(p(1)− p0) · Pt(A4,σa(0,mv)) <∞.

• Next note that Russo’s Formula gives (recall that A4,σa at v corresponds to v being

pivotal for the event of a left right crossing) for any n the bound:

∫ 1

0

∑
v∈Rn

(p1 − p0) · Pt(A4,σa(0, n)) dt = P1(C(Sn))− P0(C(Sn)) ≤ 1.

We can use this estimate the following way:

◦ Assuming that

Pt(A4,σa(0, n)) ∼ π4(n) ∼ n−α4 ,
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(this is in essence what we are trying to prove) where α4 > 0 denotes the critical

four–arm exponent, we obtain that

(p− pc) · n2 · π4(n) := C0 ≤ 1.

◦ Then if we consider 2K ∼ N and a logarithmic annular estimate (going inwards,

applying ignoring boundary effects for now) using the last estimate to bound the

outermost term and assuming all 4–arm events can be described by α4, then we

may recast the estimate as

∫ 1

0

∑
v∈RN

(p1 − p0) · Pt(A4,σa(0,mv)) dt

.p C0 ·
∑

2`−1≤d(0,v)≤2`

2α4 · #{vertices in A(2`−1, 2`)}
#{vertices in A(2N−1, 2N)}

.
∑
`

(2α4−2)`

which converges provided that 2α4−2 < 1 ⇐⇒ α4 < 2.

• What we will actually do is estimate the four arm event in terms of the five–arm event

by using Reimer’s inequality in reverse and the existential exponent for one–arm. The

weaker statement

∑
v∈Rn/2

Pp(v  5,σ ∂Rn) ∼ 1, uniformly in p, provided n < L(p)

will suffice for us:

◦ on the one hand it is a combinatorial fact that (with σ = BY BBY ) for any

measure P,

∑
v∈Rn/2

P(v  5,σ ∂Rn) = P
(
∪v∈Rn/2

{v  5,σ ∂Rn}
)
≤ 1;
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◦ on the other hand, by RSW we have that there exists C > 0 such that

Pp′
(
∪v∈Rn/2

{v  5,σ ∂Rn}
)
≥ C,

where, provided that n < L(p), the constant C can be made uniform in p′ between

p and p∗ by careful choice of the parameter governing bounds on the crossing

probabilities in the definition of the characteristic length.

• Suppose then that we have a pivotal site

v ∈ A(2`, 2`+1), k + 3 ≤ ` ≤ K − 4.

For such a site v, we may take

mv = 2`.

The annulus A(2`, 2`+1) can be decomposed in 12 smaller squares :

A(2`, 2`+1) = R
(`)
1 ∪ · · · ∪R

(`)
12 ,

where R
(`)
j ’s are squares of side–length 2`. Let us denote by R(v) the square which

contains v.

[picture of annulus decomposed into 12 smaller squares and v lying in one of them...]

Direct inspection then shows that it is the case that

{v  4,σa ∂R2`+1(v)} ⊆ {v  4,σa ∂R
′(v)} ⊆ {v  4,σa ∂R2`−1(v)},

where R′(v) = 3
2
·R(v).
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[picture of R(v) with v close to e.g., the right boundary (“extremal case”) together

with R′(v), R2`−1(v) and R2`+1(v)...]

Since for each t, we have

Pt(v  4,σa ∂R2`+1(v)) ∼ Pt(v  4,σa ∂R2`−1(v)),

Pt(v  4,σa ∂R(v)) ∼ Pt(v  4,σa ∂R
′(v)),

with a constant which can be made uniform in t, we have that

Pt(v  4,σa ∂R2`)) ∼ Pt(v  ∂R(v)),

so it is sufficient to establish the estimate

K−4∑
`=k+3

12∑
k=1

∑
v∈S(`)

j

(p(1)− p0) · Pt(v  4,σa ∂R
(`)
j )

:=
K−4∑
`=k+3

12∑
j=1

(p(1)− p0) · S(`)
j (t)

<∞.

[picture logarithmic annuli divided into smaller squares of various scales, with “small

boundary layer” shaded (off scale)...]

• Next we show that S
(`)
j (t) decays with `−1:

◦ let us first recall that from Russo’s Formula we have

|Cp(1)(2
K , 2K)−Cp0(2K , 2K)| = |

∑
v∈R

2K−3

∫ 1

0

(p(1)− p0) ·Pt(v  4,σa ∂R2K ) dt | ≤ 1.

(This is the expression we have before the logarithmic derivative.) Since we have
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by quasi–multiplicativity that

Pt(v  4,σa ∂R2K ) ∼ Pt(v  4,σa ∂R(v)) · Pt(∂R(v) 4,σa ∂R2K ),

together with the previous display we have

1 ≥ (p(1)− p0) ·
∑

v∈R
2K−3

Pt(v  4,σa ∂R2K )

∼
∑

v∈R
2K−3

Pt(v  4,σa ∂R(v)) · Pt(∂R(v) 4,σa ∂R2K ).

Next we have that again by extendability and translation invariance,

Pt(∂R(v) 4,σa ∂R2K ) ∼ Pt(∂R(w) 4,σa ∂R2K )

for any v, w in the same annulus A(2`, 2`+1). So letting R(`) denote some (any)

square comprising A(2`, 2`+1) and now writing

S(`)(t) =
∑

j, v∈R(`)
j

Pt(v  4,σa ∂R(v)),

we have

1 ≥
∑

v∈R
2K−3

Pt(v  4,σa ∂R2K ) ∼
K−4∑
`=k+3

S(`)(t) · P(∂R(`)  R2K ).

◦ Now from Reimer’s inequality we have (with σ = BBY BY )

Pt(∂R(`)  5,σ ∂R2K ) · Pt(∂R(`)  1,B ∂R2K )−1 ≤ Pt(∂R(`)  4,σ ∂R2K ),

so using the existential bound for one–arm

Pt(A1(n,N)) .
( n
N

)α′
, some α′ > 0,

and summing over `, we obtain the expression
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1 ≥
∑

v∈R
2K−3

Pt(v  4,σa ∂R2K )

∼
K−4∑
`=k+3

S(`)(t) · Pt(∂R(`)  4,σa ∂R2K )

≥
K−4∑
`=k+3

S(`)(t) · [Pt(∂R(`)  5,σ ∂R2K ) · Pt(∂R(`)  1,B ∂R2K )−1]

&
K−4∑
`=k+3

S(`)(t) · 2α′(K−`) · Pt(∂R(`)  5,σ ∂R2K ).

◦ In order to estimate the size of an individual

S(`∗)(t) ∼ 12 · S(`∗)
j , any j = 1, 2, . . . , 12,

let us fix some ` = `∗ and redo the estimate with

mv = `∗, for all v ∈ R2K−3 .

By translation invariance the term S
(`∗)
j can be pulled out of the sum over all

boxes, so the resulting estimate becomes

1 & S(`∗)(t) · 2α′(K−`∗) ·
∑

R(`∗)⊆A(2k+3,2K−4)

Pt(∂R(`∗)  5,σ ∂R2K ).

[picture R2K divided into squares of the same size with original logarithmic divi-

sion lightly drawn...]
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◦ Next we note that defining

S̃(`∗)(t) =
∑

v∈R(`∗)

Pt(v  5,σa ∂R
(`∗)(v))]

to be the corresponding sum for five arm events, then by the same reasoning as

for the S
(`)
j ’s, we obtain that

∑
v∈R

2K−3

Pt(v  5,σ ∂R2K ) ∼
∑

R(`∗)⊆A(2k+3,2K−4)

S̃(`∗)(t) · Pt(∂R(`∗)  5,σ ∂R2K ),

but by the universal result on five arm events, we have that both the left hand side

and S̃(`∗)
(

=
∑

v∈R(`∗) Pt(v  5,σa ∂R
(`∗)), some (any) R

(`)
j

)
are of order unity

and therefore ∑
R(`∗)⊆A(2k+3,2K−4)

Pt(∂R(`)  5,σa ∂R2K ) ∼ 1.

(Indeed, this is just a renormalized version of the five–arm result, where we con-

sider a coarsened lattice with blocks of scale `∗.)

[picture of renormalized lattice of scale 2K−4 inside R2K ... ∂R2K pretty far away...]

• Combining the last two items we arrive at the estimate that uniformly in t,

S(`∗)(t) . 2−α
′·(K−`∗),

so finally

d

dt
log[Pt(A1,B(n,N)] .

∑
v∈A(2k+3,2K−4)

(p1 − p0) · Pt(A4,σa(0,mv))

∼
K−4∑
`=k+3

S(`)(t) .
K−4∑
`=k+3

2−α
′·(K−`) <∞.
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Generalized Russo’s Formula. For multi–arm events, we will need to consider intersec-

tions of an increasing and decreasing event.

Lemma. Let A+, A− be monotonone increasing and decreasing events (respectively) which

depend on finitely many sites (or edges) R. Let p : t ∈ [0, 1] → [0, 1] by differentiable and

let Pt = Pp(t). Then indexing the sites (or edges) by ek and writing (in binary) e.g.,

D10
k = {ek ∈ δA+} ∩ {ek /∈ δA−}, D01

k = {ek /∈ δA+} ∩ {ek ∈ δA−},

we have
d

dt
Pt(A+ ∩ A−) =

∑
ek∈R

dp

dt
(t) ·

[
Pt(D10

k ∩ A−)− Pt(D01
k ∩ A+)

]
.

Proof. This follows as in the proof of the usual Russo’s formula. Indeed, we have the

following Bayesian decomposition:

Pt(A+ ∩ A−) = Pt(D00
k ) · Pt(A+ ∩ A− | D00

k ) + Pt(D10
k ) · Pt(A+ ∩ A− | D10

k )

+ Pt(D01
k ) · Pt(A+ ∩ A− | D01

k ) + Pt(D11
k ) · Pt(A+ ∩ A− | D11

k ).

Now it is immediately clear that the first term does not change with pk(t) (the parameter

at ek at time t) whereas the last term is identically zero since ek cannot be blue and yellow

simultaneously. On the other hand, we have

Pt(A+ ∩ A− | D10
k ) = Pt(A+ | A− ∩D10

k ) · Pt(A− | D10
k )

= pk · Pt(A− | D10
k ).

Similarly,

Pt(A+ ∩ A− | D01
k ) = (1− pk) · Pt(A+ | D01

k ).

Altogether we now have

Pt(A+ ∩ A−) = pk · Pt(D10
k ) · Pt(A− | D10

k ) + (1− pk) · Pt(D01
k ) · Pt(A+ | D01

k )

= pk · Pt(D10
k ∩ A−) + (1− pk) · Pt(D01

k ∩ A+).
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Finally, noting that e.g., D10
k ∩A− does not depend on pk, differentiating yields the the result:

∂

∂pk
Pt(A+ ∩ A−) = Pt(D10

k ∩ A−)−Pt(D01
k ∩ A+).

Even Alternating–Arms. For j even and σ = BY BY BY... alternating, we can estimate

the two terms from the generalized Russo’s formula separately : E.g., the event

{v ∈ δA+} ∩ {v /∈ δA−} ∩ A−

still locally leads to four–arms around v because of the event {v ∈ δA+}. The only difference

here is the yellow “pinning” arms to enforce the pivotal nature of v may “run into” yellow

arms which accomplish the event A− (the fact that σ is alternating means that the pinning

arms always run into yellow arms before blue). Regardless, with e.g., v ∈ A(2`, 2`+1) (with

2` � N) there still does exist four disjoint arms to ∂R2`(v).

[picture A4(n,N) with v pivotal with yellow arms locally at v “joining” the longer yellow

arms...]

Therefore, it is still sufficient to estimate
∑

v∈A(2k+3,2K−4) Pt(v  4,σa ∂Rmv(v)) as before.
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